The inverse spectral problem for first order systems on the half line

نویسندگان

  • Mark Malamud
  • MARK MALAMUD
چکیده

On the half line [0,∞) we study first order differential operators of the form B 1 i d dx +Q(x), where B := ( B1 0 0 −B2 ) , B1, B2 ∈ M(n,C) are self–adjoint positive definite matrices and Q : R+ → M(2n,C), R+ := [0,∞), is a continuous self–adjoint off–diagonal matrix function. We determine the self–adjoint boundary conditions for these operators. We prove that for each such boundary value problem there exists a unique matrix spectral function σ and a generalized Fourier transform which diagonalizes the corresponding operator in L2σ(R,C). We give necessary and sufficient conditions for a matrix function σ to be the spectral measure of a matrix potential Q. Moreover we present a procedure based on a Gelfand-Levitan type equation for the determination of Q from σ. Our results generalize earlier results of M. Gasymov and B. Levitan. We apply our results to show the existence of 2n×2n Dirac systems with purely absolute continuous, purely singular continuous and purely discrete spectrum of multiplicity one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Inverse Spectral Problem for First Order Systems on the Half Line Matthias Lesch

On the half line [0,∞) we study first order differential operators of the form

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999